Carbon isotope evidence for CO₂ dissolution and fluid-rock interaction at the Weyburn CO₂-injection enhanced oil recovery site, Saskatchewan, Canada Hutcheon, I.¹, Durocher, K.¹, Shevalier, M.^{1*}, Mayer, B.¹, Gunter, W.², and Perkins, E.² #### **Abstract** Geochemical and isotopic analyses of produced fluid at EnCana's Weyburn CO_2 -EOR operation are being used as a monitoring tool for fluid-rock reaction and injected CO_2 dissolution and distribution. Chemical parameters (e.g. pH and cation/anion concentrations) show dissolution of injected CO_2 and localized carbonate dissolution. These processes are best illustrated with evolving carbon isotope compositions of bicarbonate ($\Box^{13}C_{initial}=-3\%$), reservoir minerals ($\Box^{13}C=+4\%$), produced CO_2 ($\Box^{13}C_{initial}=-13\%$), and injected CO_2 ($\Box^{13}C=-34\%$). Localized calcite and dolomite reservoir dissolution results in higher $\Box^{13}C$ values for aqueous bicarbonate. CO_2 dissolution dominates near high volume CO_2 injectors, where injected CO_2 with low $\Box^{13}C$ values has been traced into produced fluid. #### Introduction The Weyburn field is one of a number of large oilfields that lie along the Mississippian subcrop belt on the northern extent of the Williston Basin. The Weyburn field is located approximately 130 kilometers southeast of Regina, Saskatchewan, Canada (Figure 1) where medium gravity crude oil is produced from the Midale beds [1] of the Mississippian Charles Formation. This reservoir is comprised of the low permeability dolomitic Marly zone and the underlying calcitic, more permeable, Vuggy Shoal and less permeable Vuggy Intershoal zones. Oil-bearing reservoir rocks are overlain by an anhydrite cap. The Midale beds of the Weyburn field were discovered in 1954 and produced by primary depletion until 1964, when injection of water was used to enhance oil recovery [1]. By 1996, cumulative production reached 328 million barrels of oil or 23% of the 1.4 billion barrels of the original oil-in-place. In 1997, PanCanadian (now EnCana Corporation) announced the Weyburn CO₂ miscible flood project, which is forecasted to add incremental oil recovery of 120 to 140 million barrels. The CO₂ used in the miscible flood originates from the Great Plains Synfuel coal gasification plant in Beulah, North Dakota by way of a 320-kilometer pipeline (Figure 1). CO₂ and water are injected into the reservoir over a 19-spot pattern (Figure 1). ## Miscible CO₂ flooding Under the correct conditions of pressure, temperature and oil composition, CO₂ becomes miscible with oil and causes the residual oil to swell, lowering the viscosity. CO₂ is injected with water to retard CO₂ mobility. A factor thought to increase oil recovery during CO₂ injection is the increase in permeability due to the acidity of carbon dioxide-water mixtures. Acid gases have been suggested to dissolve carbonate minerals in the formation matrix resulting in a permeability increase [3]. - ¹Department of Geology and Geophysics, University of Calgary, Calgary, AB, T2N 1N4, Canada fax: 403-284-0074 ²Alberta Research Council, Edmonton, AB, T6N 1E4, Canada fax: 780-450-5083 ^{*} Presenter. Contact: maurice@earth.geo.ucalgary.ca ## CO₂ and Carbonate Mineral Dissolution Carbonate reservoirs typically containing Fe-, Mg- and Ca-bearing carbonates have low trapping potential for CO₂ as can be shown by the reactions: (1) CO_2 dissolution: $H_2O + CO_2 \square H_2CO_3 \square H^+ + HCO_3$ (2) Calcite dissolution: $H^+ + CaCO3 \square Ca^{2+} + HCO_3^-$ (3) Both CO₂ and calcite dissⁿ: $H_2O + CO_2 + CaCO_3 \sqcap Ca^{2+} + 2HCO_3 \sqcap Ca^{2+}$ Reaction (1) represents CO_2 dissolution, and results in the modified fluid having a lower pH and higher $[HCO_3^-]$. Reaction (2) represents reservoir calcite dissolution. This reaction leads to higher carbonate alkalinity and higher cation concentrations. If both reactions take place, as shown by reaction (3), then for each mole of injected CO_2 that reacts, we can expect one mole of cation, and 2 moles of HCO_3^- dissolved in the *in situ* fluid. Injected CO_2 has a very low $\Box^{13}C$ value (-34% V-PDB) that can be traced via the reactions above into bicarbonate and produced CO_2 at the wellhead (reactions 1 and 3). Dissolution of relatively $\Box^{13}C$ enriched carbonate minerals (without input of injected CO_2) leads to an increase of $\Box^{13}C$ values of produced bicarbonate and CO_2 (reaction 2) #### Results Aqueous geochemistry Selected geochemical and isotopic parameters are plotted as contoured maps in Figure 2, 3, and 4. In Figure 2, total alkalinity has increased up to three fold over the first two years of CO_2 injection. Similarly, Ca concentrations have doubled in some zones of the injection pilot area. These increases are consistent with the reactions (2) and (3) above, the dissolution of reservoir minerals. Figure 3 contour maps show the approximate distribution and volume of injected CO_2 , and the measured pH. Lows in pH and highs in alkalinity and Ca are spatially consistent with the zone of highest CO_2 injection volumes. The drop in measured pH and corresponding increases in alkalinity are consistent with reaction (1) above, the dissolution of injected CO_2 . ## Carbon isotope geochemistry Carbon isotope signatures of fluid, gas, and minerals at Weyburn are distinct. Reactions involving dissolution of injected CO_2 and carbonate minerals can be traced in the resulting produced fluid and gas. Injection CO_2 has a $\Box^{13}C$ value of -34%, while calcite and dolomite have $\Box^{13}C$ values between 2.8 and 5.5%. Baseline (pre-injection) dissolved CO_2 in the reservoir fluid (HCO₃) and produced CO_2 gas have carbon isotopic signatures of -2.8% and -12.7%, respectively. Reactions (1) and (2) should have a profound effect on the carbon isotope results. With injected CO_2 dissolution (Reaction 1), the CO_2 from Beulah, which is depleted in ^{13}C , will be reflected in isotopically lighter produced CO_2 and HCO_3 (i.e. more negative values). Alternatively, with carbonate mineral dissolution (Reaction 2), produced CO_2 and HCO_3 will be enriched in ^{13}C (i.e. more positive values). Figure 4 shows the initial NW-SE field-wide variation in isotopic values. After 289 days of injection, sharp decreases are evident in the southeastern portion of the pilot area and correspond with the highest injected CO_2 volumes. After 644 days of injection bicarbonate ^{13}C data show some slight increases in $\Box^{13}C$ values from the previous year. The zones of slight $\Box^{13}C$ increases are spatially consistent with high Ca concentrations. - The preliminary \Box^{13} C data suggest that CO_2 dissolution was the dominant process during the first year of CO_2 injection. By the second year, calcite and dolomite dissolution have contributed to the changing water and gas chemistry. The data therefore suggest that both CO_2 dissolution and carbonate mineral dissolution took place during the first 22 months of CO_2 injection. Mass balance calculations in the near future will help quantify the respective inputs of each dissolution process on the resulting water and gas chemistry. # **Summary** The trends in chemical composition and the isotope data suggest that the reaction of injected CO_2 with the formation water lowered pH, resulting in dissolution of carbonate minerals and production of bicarbonate. Mineral dissolution raised the pH and production of bicarbonate. These reactions result in storage of injected CO_2 in the formation water as bicarbonate ions. The southern and southeastern injection wells have the highest cumulative CO_2 injection volumes. These areas coincide with high alkalinity, low $\Box^{13}C$ values in the bicarbonate phase, and lower pH. These trends point towards dissolution of injected CO_2 ($\Box^{13}CO_2 \sim -34\%$) in the reservoir fluid. Increases in Ca concentration, alkalinity, $\Box^{13}C(HCO_3)$, and pH together are indicative of carbonate dissolution. #### References - [1] El Sayed, S.A., Baker, R., Churcher, P.L., and Emunds, A.C. Multidisciplinary reservoir characterization and simulation of the Weyburn Unit. Journal of Petroleum Technology 1993; 45: 930-974. - [2] Burrowes, G. and Gilboy, C. Investigating Sequestration Potential of Carbonate Rocks During Tertiary Recovery from a Billion Barrel Oil Field, Weyburn, Saskatchewan: The Geoscience Framework. IEA Weyburn CO₂ Monitoring and Storage Project Report. 2000: - [3] Sayegh, S. G., Krause, F. F., Girard, M., and DeBree, C. Rock/Fluid Interactions of Carbonated Brines in a Sandstone Reservoir: Pembina Cardium, Alberta, Canada. Journal of the Society of Petroleum Engineers, Formation Evaluation, 1990; 30: 399-405. ## **Figure Captions** Figure 1: a) Location of the Weyburn field. The map on the left shows the approximate location of the CO₂ pipeline from Beulah, North Dakota. b) Location of the Phase 1A pilot injection area within the Weyburn oil field. The Phase 1A injection area is highlighted on contour maps in Figures 2 and 3 (after [2]). Figure 2: Contour maps of total alkalinity (mg/L) and Ca²⁺ concentration (mg/L) in produced fluid for the pilot injection area. The black dots represent sampling points at depth in the reservoir. Note the increased alkalinity and Ca concentration as CO₂ injection progressed. Figure 3: Contour maps of injected CO₂ volumes (thousand standard cubic metres) and measured pH for the pilot injection area. For the CO₂ injection contour maps, dots represent the locations of vertical and horizontal (midpoint) injectors. - .